THE MANY COLORS OF CHAMELEON

Kate Keahey
Mathematics and CS Division, Argonne National Laboratory
CASE, University of Chicago
keahey@anl.gov

September 10, 2019
PPAM 2019
CHAMELEON IN A NUTSHELL

- We like to change: testbed that adapts itself to your experimental needs
 - Deep reconfigurability (bare metal) and isolation (CHI) – but also ease of use (KVM)
 - CHI: power on/off, reboot, custom kernel, serial console access, etc.
- We want to be all things to all people: balancing large-scale and diverse
 - Large-scale: ~large homogenous partition (~15,000 cores), 5 PB of storage distributed over 2 sites (now +1!) connected with 100G network...
 - ...and diverse: ARMs, Atoms, FPGAs, GPUs, Corsa switches, etc.
- Cloud++: leveraging mainstream cloud technologies
 - Powered by OpenStack with bare metal reconfiguration (Ironic) + “special sauce”
 - Chameleon team contribution recognized as official OpenStack component
- We live to serve: open, production testbed for Computer Science Research
 - Started in 10/2014, testbed available since 07/2015, renewed in 10/2017
 - Currently 3,500+ users, 500+ projects, 100+ institutions
CHAMELEON HARDWARE

- **Chameleon Core Network**: 100Gbps uplink public network (each site)
 - **Core Services**: 3.5PB Storage System
 - **Core Services**: 0.5PB Storage System

- **Heterogeneous Cloud Units**:
 - GPUs (K80, M40, P100), FPGAs, NVMe, SSDs, IB, ARM, Atom, low-power Xeon

- **SkyLake Standard Cloud Unit**: 32 compute, Corsa Switch x2
 - **SkyLake Standard Cloud Unit**: 32 compute, Corsa Switch x1

- **Chameleon Associate Site Northwestern**
- **GENI and other partners**

- **Chicago**
- **Austin**
CHAMELEON HARDWARE (DETAILS)

- “Start with large-scale homogenous partition”
 - 12 Haswell Standard Cloud Units (48 node racks), each with 42 Dell R630 compute servers with dual-socket Intel Haswell processors (24 cores) and 128GB RAM and 4 Dell FX2 storage servers with 16 2TB drives each; Force10 s6000 OpenFlow-enabled switches 10Gb to hosts, 40Gb uplinks to Chameleon core network
 - 3 SkyLake Standard Cloud Units (32 node racks); Corsa (DP2400 & DP2200) switches, 100Gb uplinks to Chameleon core network
 - Allocations can be an entire rack, multiple racks, nodes within a single rack or across racks (e.g., storage servers across racks forming a Hadoop cluster)

- Shared infrastructure
 - 3.6 + 0.5 PB global storage, 100Gb Internet connection between sites

- “Graft on heterogeneous features”
 - Infiniband with SR-IOV support, High-mem, NVMe, SSDs, GPUs (22 nodes), FPGAs (4 nodes)
 - ARM microservers (24) and Atom microservers (8), low-power Xeons (8)

- Coming soon: more nodes (CascadeLake), and more accelerators
EXPERIMENTAL WORKFLOW

- Fine-grained
- Complete
- Up-to-date
- Versioned
- Verifiable

- Allocatable resources: nodes, VLANs, IPs
- Advance reservations and on-demand
- Isolation

- Deeply reconfigurable
- Appliance catalog
- Snapshotting
- Orchestration
- Networks: stitching and BYOC

- Hardware metrics
- Fine-grained data
- Aggregate
- Archive

CHI = 65%*OpenStack + 10%*G5K + 25%*”special sauce”
RECENT DEVELOPMENTS

- Allocatable resources
 - Multiple resource management (nodes, VLANs, IP addresses), adding/removing nodes to/from a lease, lifecycle notifications, advance reservation orchestration

- Networking
 - Multi-tenant networking,
 - Stitching dynamic VLANs from Chameleon to external partners (ExoGENI, ScienceDMZs),
 - VLANs + AL2S connection between UC and TACC for 100G experiments
 - BYOC– Bring Your Own Controller: isolated user controlled virtual OpenFlow switches

- Miscellaneous features
 - Power metrics, usability features, new appliances, etc.
VIRTUALIZATION OR CONTAINERIZATION?

- Yuyu Zhou, University of Pittsburgh
- Research: lightweight virtualization
- Testbed requirements:
 - Bare metal reconfiguration, isolation, and serial console access
 - The ability to “save your work”
 - Support for large scale experiments
 - Up-to-date hardware

SC15 Poster: “Comparison of Virtualization and Containerization Techniques for HPC”
EXASCALE OPERATING SYSTEMS

- Swann Perarnau, ANL
- Research: exascale operating systems
- Testbed requirements:
 - Bare metal reconfiguration
 - Boot from custom kernel with different kernel parameters
 - Fast reconfiguration, many different images, kernels, parameters
 - Hardware: accurate information and control over changes, performance counters, many cores
 - Access to same infrastructure for multiple collaborators

HPPAC'16 paper: “Systemwide Power Management with Argo”
CLASSIFYING CYBERSECURITY ATTACKS

- Jessie Walker & team, University of Arkansas at Pine Bluff (UAPB)
- Research: modeling and visualizing multi-stage intrusion attacks (MAS)
- Testbed requirements:
 - Easy to use OpenStack installation
 - A selection of pre-configured images
 - Access to the same infrastructure for multiple collaborators
CREATING DYNAMIC SUPERFACILITIES

- NSF CICI SAFE, Paul Ruth, RENCI-UNC Chapel Hill
- Creating trusted facilities
 - Automating trusted facility creation
 - Virtual Software Defined Exchange (SDX)
 - Secure Authorization for Federated Environments (SAFE)
- Testbed requirements
 - Creation of dynamic VLANs and wide-area circuits
 - Support for network stitching
 - Managing complex deployments
DATA SCIENCE RESEARCH

- ACM Student Research Competition semi-finalists:
 - Blue Keleher, University of Maryland
 - Emily Herron, Mercer University
- Searching and image extraction in research repositories
- Testbed requirements:
 - Access to distributed storage in various configurations
 - State of the art GPUs
 - Easy to use appliances and orchestration
ADAPTIVE BITRATE VIDEO STREAMING

- Divyashri Bhat, UMass Amherst
- Research: application header based traffic engineering using P4
- Testbed requirements:
 - Distributed testbed facility
 - BYOC – the ability to write an SDN controller specific to the experiment
 - Multiple connections between distributed sites
- https://vimeo.com/297210055

LCN’18: “Application-based QoS support with P4 and OpenFlow”
AN OPEN PLATFORM
BEYOND THE PLATFORM: BUILDING AN ECOSYSTEM

- Helping hardware providers interact
 - Bring Your Own Hardware (BYOH)
 - CHI-in-a-Box: deploy your own Chameleon site

- Helping our user interact – with us but primarily with each other
 - Creating compatible digital artifacts: tools, appliances, orchestration templates, notebooks, etc.
 - Publishing, sharing, and discovering artifacts: appliance catalog, blog as a publishing platform, etc.
 - Testbed as a “player” for common artifacts
CHI-IN-A-BOX

- CHI-in-a-box: packaging a commodity-based testbed
 - First released in summer 2018, continuously improving
- CHI-in-a-box scenarios
 - Independent testbed: package assumes independent account/project management, portal, and support
 - Chameleon extension: join the Chameleon testbed (currently serving only selected users), and includes both user and operations support Part-time extension: define and implement contribution models
 - Part-time Chameleon extension: like Chameleon extension but with the option to take the testbed offline for certain time periods (support is limited)
- Adoption
 - New Chameleon Associate Site at Northwestern since fall 2018 – new networking!
 - Two organizations working on independent testbed configuration
REPRODUCIBILITY DILEMMA

Should I invest in making my experiments repeatable? Should I invest in more new research instead?

- Reproducibility as side-effect: lowering the cost of repeatable research
 - Example: Linux “history” command
 - From a meandering scientific process to a recipe
- Reproducibility by default: documenting the process via interactive papers
REPEATABILITY MECHANISMS IN CHAMELEON

- Testbed versioning (collaboration with Grid’5000)
 - Based on representations and tools developed by G5K
 - >50 versions since public availability – and counting
 - Still working on: better firmware version management

- Appliance management
 - Configuration, versioning, publication
 - Appliance meta-data via the appliance catalog
 - Orchestration via OpenStack Heat

- Monitoring and logging

However... the user still has to keep track of this information
KEEPING TRACK OF EXPERIMENTS

- Everything in a testbed is a recorded event... or could be
- The resources you used
- The appliance/image you deployed
- The monitoring information your experiment generated
- Plus any information you choose to share with us: e.g., “start power_exp_23” and “stop power_exp_23

- Experiment précis: information about your experiment made available in a “consumable” form
REPEATABILITY: EXPERIMENT PRÉCIS

- OpenStack services
- Instance monitoring
- Infrastructure monitoring
- User events

Store and share

Orchestrator (Heat)
INTERACTIVE PAPERS

- What does it mean to document a process?
- Some requirements
 - Easy to work with: human readable/modifiable format
 - One process to rule them all: integrates well with ALL aspects of experiment management
 - Bit by bit – allows for modification and introspection as well – reflects the meandering scientific process
 - Support story telling: allows you to explain your experiment design and methodology choices
 - Has a direct relationship to the actual paper that gets written
 - Can be version controlled
 - Sustainable, a popular open source choice

- Implementation options
 - Orchestrators -- OpenStack Heat and Flame – a declarative approach
 - Notebooks -- Jupyter, NextJournal, and others – an imperative and integrative approach
CHAMELEON JUPYTER INTEGRATION

- Combining the ease of notebooks and the power of a shared platform
 - Storytelling with Jupyter: ideas/text, process/code, results – but limited containers
 - Chameleon: sophisticated experimental containers in need of “storytelling”
- JupyterLab server for our users
 - Go to jupyter.chameleoncloud.org and log in with your Chameleon credentials
- Chameleon/Jupyter integration
 - Interfaces: python and bash for all the main testbed functions
 - Working with named containers
- Templates of existing experiments

Screencast of a complex experiment: https://vimeo.com/297210055
We now have everything we need to share experiments
- Ways to establish an experimental environment + player
- Ways to document an experimental process

But wait... how do I actually share them?
- Send mail, Chameleon object store, github...
- Publishing via Zenodo: store your experiments and make them citable!

Creating bridges, integration
- Import/Export from/to Zenodo

Making research findable: the sharing platform

SC19 Poster: Sharing and Replicability of Notebook-Based Research on Open Testbeds
Well-documented process

Accessible, consistent code environment

Easy to find experiment

Notebooks

Open testbeds

Sharing platform

Integration

Experiment actions

Publicly shared experiment

Publishing platform
PARTING THOUGHTS

- Physical environment: a rapidly evolving platform implemented as cloud++
 - Specially adapted cloud with support for advanced cloud computing research
 - Originally: “Adapts to the needs of your experiment”
 - Now also: “Adapts to the needs of its community and the changing research frontier”

- Towards an Ecosystem: a meeting place of users and providers sharing resources and research
 - Testbeds are more than just experimental platforms
 - Common/shared platform is a “common denominator” that can eliminate much complexity that goes into systematic experimentation, sharing, and reproducibility...
 - … as well as education!

- Be part of the change: tell us what capabilities we should provide to help you share and leverage the contributions of others!